
Al-Albayt University

Computer Science Department

C++ Programming 1 (901131)

Coordinator:

Dr. Ashraf Al-Ou’n

2019-2018الفصل الدراسي الأول

Subjects

1. Introduction to C++ Programming

2. Control Structures

3. Functions

4. Arrays

2

1- Introduction to C++ Programming

3

What is computer?

• Computers are programmable devices capable of performing

computations and making logical decisions.

• Computers can store, retrieve, and process data according to

a list of instructions

• Hardware is the physical part of the compute: keyboard,

screen, mouse, disks, memory, and processing units

• Software is a collection of computer programs, procedures

and documentation that perform some tasks on a computer

system

4

Computer Logical Units

• Input unit

– obtains information (data) from input devices

• Output unit

– outputs information to output device or to control other devices.

• Memory unit

– Rapid access, low capacity, stores information

• Secondary storage unit

– cheap, long-term, high-capacity storage, stores inactive programs

• Arithmetic and logic unit (ALU)

– performs arithmetic calculations and logic decisions

• Central processing unit (CPU):

– supervises and coordinates the other sections of the computer

5

Computer language
• Machine languages: machine dependent, it consists of strings of numbers

giving machine specific instructions:

+1300042774

+1400593419

+1200274027

• Assembly languages: English-like abbreviations representing elementary

operations, assemblers convert assembly language to machine language:

load

add

store

basepay

overpay

grosspay

• High-level languages: Similar to everyday English, use mathematical

notations, compilers convert high-level language into machine language,

C++ is a high level language:

grossPay = basePay + overTimePay

6

Program Design

• Programming is a creative process

• Program Design Process

– Problem Solving Phase

➢ Result is an algorithm that solves the problem

– Implementation Phase

➢ Result is the algorithm translated into a programming

language

7

Problem Solving Phase

❑ Be certain the task is completely specified

– What is the input?

– What information is in the output?

– How is the output organized?

❑ Develop the algorithm before implementation

– Experience shows this saves time in getting program

to run.

– Test the algorithm for correctness

8

Problem Solving Phase

❑ Algorithm

▪ A sequence of precise instructions (written is pseudo code or

represented as a flowchart) which leads to a solution

❑ Pseudo code

▪ Artificial, informal language similar to everyday English

▪ Used to develop algorithms and not executed on computers

▪ Only executable statements, no need to declare variables

❑ Program

▪ An algorithm expressed in a language the computer can understand

9

Implementation Phase

▪ Translate the algorithm into a programming language

– Easier as you gain experience with the language

▪ Compile the source code

– Locates errors in using the programming language

▪ Run the program on sample data

– Verify correctness of results

▪ Results may require modification of the algorithm and

program

10

Flowchart
• Graphical representation of an algorithm or a portion of algorithm

• Drawn using certain special-purpose symbols connected by arrows

called flow lines:

Start and End

Input / output

Selection

Calculation

11

Input a,b

S = a + b

Output s

Compute and print the summation of two numbers
12

Input n1,n2,n3

S = n1+n2+n3

Average = s / 3

Output average

Compute and print the average of three numbers
13

Input R

A = 3.14 * R *R

Output A

Compute the area of the circle

Where area = 3.14 x R214

Input Num

Output

"Positive"

True

Num>0

False

Read a number then print positive if it is positive
15

Input Num

Output

"Positive"

Num>0

TrueFalse

Output

"Negative"

Read a number then print positive if it is positive and

print negative otherwise.16

Input x, y

Output

x

X>y

TrueFalse

Output

y

Read Two numbers then print the greatest one
17

Read three numbers and print the smallest one

Input a, b, c

a<b

and

a<c

True

output a

b<a

and

b<c

True

output b

c<a

and

c<b

True

output c

18

Input a, b, c

a<b
True

Output a

False

a<cb<c

Output cOutput bOutput c

Another Solution

19

Print the word "Amman" five times.

Output "Amman"

Count<=5

False

Count = 1

Count = Count + 1

True

20

Output I

True

I<=11

False

I = 1

I = I + 2

Print the following numbers

1 3 5 7 9 11
21

Output I

True

I >= 2

False

I = 20

I = I - 3

Print the following numbers

20 17 14 11 8 5 2
22

True

C<=5

False

C= 1

C = C + 1

S = 0

S = S + C

Output S

Compute and print 𝑆
Where 𝑆= 1 + 2 + 3 + 4 + 5

23

C = 1

C = C + 1

S = 0

S = S + Num
Output S

True

C<=10

INPUT Num

False

Print the Sum of 10 numbers entered by the user

24

True

C>=1

C = 5

C = C - 1

Fact = 1

Fact = Fact * C

False

Output Fact

Compute and Print the factorial of 5, where:
𝑓𝑎𝑐𝑡 5 = 5 × 4 × 3 × 2 × 1

25

True

I <= n

I = 2

I = I + 2

M = 1

M = M * I

False

Output M

INPUT n

Compute and Print the value of M where:
𝑀 = 2×4×6×⋯× 𝑛

26

C++ Programming Language

▪ C++ standard library
– Rich collections of existing classes and functions which are

written in the core language

– Can be used at any C++ program

▪ C++ programs
– Built from pieces called classes and functions which can

span multiple files

– Structured into small understandable units to reduce the complexity

and decrease program size

– "Building block approach" to creating programs help in software

reuse

▪ C++ is case sensitive

27

// A first program in C++.

#include<iostream>

//function main begins program

execution

int main()

{

std::cout << "Welcome to C++!\n";

}

First C++ Program
28

Welcome to C++!

First C++ Program: Printing a Line of Text

// A first program in C++.

▪ Comments are ignored by compiler, used to document programs

and improve readability

– Single line comment begin with //, and multiple line comments

begin with /* and end with */

#include <iostream>

▪ Preprocessor directives begin with #

– Processed by preprocessor before compiling

– Causes a copy of the specified header file (iostream) to be included in

place of the directive

– iosteam is standard library header file that must be included if

because cout is to be used

29

int main()

• Part of every C++ Program

• main() is a function, which begins with left brace ({) and ends

with right brace (})

std::cout << "Welcome to C++!\n";

• cout is a standard output stream object found in iostream

• cout is connected to the screen

• << is the stream insertion operator

– Value to right (right operand) inserted into output stream (which is connected to
the screen)

• std:: specifies using name that belongs to "namespace" std

• Escape characters (\): indicates "special" character output

First C++ Program: Printing a Line of Text
30

Escape Character

Escape

Sequence Description

\n
Newline. Position the screen cursor to the beginning of the next line.

\t Horizontal tab. Move the screen cursor to the next tab stop.

\r
Carriage return. Position the screen cursor to the beginning of the

current line; do not advance to the next line.

\a Alert. Sound the system bell.

\\ Backslash. Used to print a backslash character.

\" Double quote. Used to print a double quote character.

31

Example

#include <iostream>

int main()

{

std::cout << "Welcome ";

std::cout << "to C++!\n";

}

32

Welcome to C++!

Example

#include <iostream>

using namespace std;

int main()

{

cout << "Welcome\nTo\nC++!\n";

}

33

Welcome

to

C++!

Testing and Debugging

▪ Bug

– A mistake in a program

▪ Debugging

– Eliminating mistakes in programs

34

Program Errors

▪ Syntax errors

– Violation of the grammar rules of the language

– Discovered by the compiler

• Error messages may not always show correct location of errors

▪ Run-time errors

– Error conditions detected by the computer at run-time

▪ Logic errors

– Errors in the program's algorithm

– Most difficult to diagnose

– Computer does not recognize an error

35

Stream extraction operator (>>)

▪ When used with cin, waits for the user to input a value and stores

the value in the variable to the right of the operator

▪ The user types a value, then presses the Enter (Return) key to send
the data to the computer

▪ Example:

int myVariable;

cin >> myVariable;

– Waits for user input, then stores input in myVariabl

36

Compute and print the summation of two numbers

#include <iostream>

using namespace std;

int main(){

int num1, num2, sum;

cout <<"Please Enter two numbers:\n";

cin >> num1 >> num2;

sum = num1 + num2;

cout<<"sum = "<<sum<<endl;

}

37

Please Enter two numbers:

2

3

sum = 5

Fundamental C++ Objects

▪ Integer objects
short int long

▪ Floating-point objects
float double long double

– represent real numbers

▪ Character objects
char

– may hold only a single letter, a single digit, or a single special
character like a, $, 7, *.

▪ Different types allow programmers to use resources more
efficiently

38

Character object type

▪ ASCII is the dominant encoding scheme

– ' ' encoded as 32

– 'A' encoded as 65

'+' encoded as 43

'a' encoded as 97

▪ Explicit (literal) characters within single quotes:
'a' 'D' '*'

▪ Special characters - delineated by a backslash \

'\n' '\t' '\\'

39

Memory Concepts

int num2 = 7;

int sum = num1 + num2;

▪ Variables are names of memory locations

▪ Correspond to actual locations in computer's memory

▪ Every variable has name, type, size and value

▪ When new value placed into variable, overwrites previous value

▪ Reading variables from memory is nondestructive

int num1 = 4;

num1

num2

Sum

4

7

11

40

Names (Naming Entities)

▪ Used to denote program values or components

▪ A valid name is a sequence of
– Letters (upper and lowercase)

– A name cannot start with a digit

▪ Names are case sensitive
– MyVar is a different name than MYVAR

▪ There are two kinds of names
– Keywords

– Identifiers

41

Keywords

▪ Keywords are words reserved as part of the language

▪ They cannot be used by the programmer to name things

▪ They consist of lowercase letters only

▪ They have special meaning to the compiler

42

C++ Keywords
and continue goto public try

and_eq default if register typedef

asm delete inline reinterpret_cast typeid

auto do int return typename

bitand double long short union

bitor dynamic_cast mutable signed unsigned

bool else namespace sizeof using

break enum new static virtual

case explicit not static_cast void

catch export not_eq struct volatile

char extern operator switch wchar_t

class false or template while

compl float or_eq this xor

const for private throw xor_eq

const_cast friend protected true

43

Identifiers

▪ Used to name entities in C++

▪ Consists of letters, digits or underscore
– Starts with a letter or underscore

– Can not start with a digit

▪ Identifiers should be:
– Short enough to be reasonable to type

– Long enough to be understandable

▪ Examples
– Grade

– Temperature

– CameraAngle

– IntegerValue

44

Definitions/declaration

▪ All variable that are used in a program must be defined (declared)

▪ A variable definition specifies Type and Identifier

▪ General definition form: Type Id;

▪ Examples:
Char Response;
int MinElement;
float Score;
float Temperature;
int i;
char c;

double x;

▪ Value of a variable is whatever in its assigned memory location

▪ Memory location is where a variable value can be stored for

program use

45

Type compatibilities

▪ Store the values in variables of the same type

▪ This is a type mismatch:
int x;
x = 2.99;

▪ Variable x will contain the value 2, not 2.99

46

Arithmetic

▪ Arithmetic is performed with operators.

▪ Arithmetic operators are listed in following table

▪ Modulus operator returns the remainder of integer division

7 % 5 evaluates to 2

▪ Integer division truncates remainder

7 / 5 evaluates to 1

C++ operation Arithmetic operator Algebraic expression C++ expression

Addition + f + 7 f + 7

Subtraction - p – c p – c

Multiplication * bm b * m

Division / x / y x / y

Modulus % r mod s r % s

47

Results of Arithmetic operators

▪ Arithmetic operators can be used with any numeric type.

▪ An operand is a number or variable used by the operator

e.g.

– integer1 + integer2

• + is operator

• integer1 and integer2 are operands

▪ Result of an operator depends on the types of operands

– If both operands are int, the result is int

– If one or both operands are double, the result is double

48

Integer Division

𝟏𝟐 %𝟑0

𝟏𝟐

𝟑

4

3 12

12

𝟏𝟒 %𝟑2

4

3 14

12

𝟏𝟒

𝟑

49

Examples on integer division

#include <iostream>

using namespace std;

int main()

{

cout<< 10/4 <<endl;

cout<< 10.0/4 <<endl;

cout<< 10/4.0 <<endl;

}

50

2

2.5

2.5

Comparing mathematical and C++ expressions

Mathematical formula C++ Expression

𝑥2 − 5𝑦𝑧 𝑥 ∗𝑥− 5 ∗𝑦 ∗𝑧

𝑥(𝑦 +2𝑧) 𝑥 ∗(𝑦 + 2∗𝑧)

1

𝑥2 + 4𝑦+ 3

1/(𝑥 ∗𝑥+ 4 ∗𝑦 +3)

𝑤 + 𝑥

𝑦 +2𝑧
(𝑤+ 𝑥)/(𝑦 + 2 ∗𝑧)

51

Operator precedence

▪ The order in which an operator is executed

▪ For example, the multiplication operator (*) is

executed before addition operator (+)

▪ To find the average of three variables a, b and c
– Incorrect: a + b + c / 3

– Correct: (a + b + c) / 3

52

Rules of operator precedence

Operator(s) Operation(s) Order of evaluation (precedence)

() Parentheses

Evaluated first. If the parentheses are nested,

the expression in the innermost pair is

evaluated first. If there are several pairs of

parentheses "on the same level" (i.e.,

not nested), they are evaluated left to right.

*, /, or %

Multiplication

Division

Modulus

Evaluated second. If there are several, they

are evaluated left to right.

+ or -
Addition

Subtraction

Evaluated last. If there are several, they are

evaluated left to right.

53

Example on Operator Precedence

1)10/5 = 2 → 20 – 2 * 2 + 3 * 5 % 4

2)2*2 = 4 → 20 - 4 + 3 * 5 % 4

3)3*5 = 15 → 20 - 4 + 15 % 4

4)15%4 = 3 → 20 - 4 + 3

5)20 – 4 = 16 → 16 + 3

6)16 + 3 = 19

Evaluate the following arithmetic expression:

20 – 10 / 5 * 2 + 3 * 5 % 4

54

Assignment operator (=)

▪ The (=) operator in C++ is not an equal sign. It assigns a value to a

variable

▪ An assignment statement changes the value of the variable on the left of

the assignment operator (=)

▪ General Form: identifier= expression;

▪ On the right of the assignment operator can be

• Constant: x = 21;

• Variable: x = y;

• Expression: x = y * 2 + z;

▪ The following statement is not true in algebra: i = i + 3;

– In C++ it means the new value of i is the previous value of i plus 3

55

Assignment expression abbreviations

▪ C++ provides several assignment operators for abbreviating
assignment expressions, as shown in the table below:

Assignm ent

op e ra to r

Sam p le

exp ression Exp la na tio n Assigns

Assume: int c = 3, d = 5, e = 4, f = 6, g = 12;

+= c += 7 c = c + 7 10 to c

-= d -= 4 d = d - 4 1 to d

*= e *= 5 e = e * 5 20 to e

/= f /= 3 f = f / 3 2 to f

%= g %= 9 g = g % 9 3 to g

56

Print the average of three numbers

int main() {

int n1 , n2 , n3;

float s , average;

cout << "Please Enter three integers:\n";

cin >> n1 >> n2 >> n3;

s = n1 + n2 + n3;

average = s / 3;

cout << "Average = " << average << endl;

}

57

Please Enter three integers:

1

6

2

Average = 3

Compute the area of a circle, where area = π x r2

int main(){

double Pi = 3.14;
int r;

cout<<"Please enter r : ";

cin>>r;

double area;

area = Pi * r * r;

cout<<"Circle's Area = "<< area <<endl;

}

58

Increment and Decrement Operators

▪ Increment and decrement operators are unary operators as
they require only one operand.
– ++ unary increment operator: Adds 1 to the value of a variable

– -- unary decrement operator

– x++ is equivalent to x = x + 1

– x-- is equivalent to x = x – 1

▪ Pre-increment
– When the operator is used before the variable (++c), Variable

is changed, then the expression it is in is evaluated

▪ Post-increment
– When the operator is used after the variable (c++), Expression the

variable is in executes, then the variable is changed.

59

Increment and Decrement Operators

▪ Example: If c = 5, then

– cout << ++c;

• c is changed to 6, then printed out
– cout << c++;

• Prints out 5 (cout is executed before the increment)

• c then becomes 6

▪ When variable not in expression
– Preincrement and postincrement have same effect

++c;

cout << c;

and
c++;

cout << c;

are the same

60

Increment and decrement operators

Operator
Sample

expression Explanation

++

Preincrement ++a
Increment a by 1, then use the new value of a in the

expression in which a resides.

++

Postincrement
a++

Use the current value of a in the expression in which

a resides, then increment a by 1.

--

Predecrement
--b

Decrement b by 1, then use the new value of b in the

expression in which b resides.

--

postdecrement
b--

Use the current value of b in the expression in which

b resides, then decrement b by 1.

61

Understand the effect of pre and post-increment

int main(){

int c;

c = 5;

cout << c << endl;

cout << c++ << endl

cout << c << endl << endl;

c = 5;

cout << c << endl;

cout << ++c << endl;

cout << c << endl;

}

62

5

5

6

5

6

6

Operators Precedence

Operators Associativity Type

() left to right parentheses

++ -- left to right unary (postfix)

++ -- + - right to left unary (prefix)

* / % left to right multiplicative

+ - left to right additive

< <= > >= left to right relational

== != left to right equality

= += -= *= /= %= right to left assignment

63

Example

int main(){

int X = 5 , Y = 7 , Z;

cout<< X++ <<endl;

cout<< ++X <<endl;

Z = X++ + Y;

cout <<X<<"\t"<<Y<<"\t"<<Z<<endl;

Z = ++X + Y;

cout <<X<<"\t"<<Y<<"\t"<<Z<<endl;

Z = X++ + Y++;

cout <<X<<"\t"<<Y<<"\t"<<Z<<endl;

}

64

5

7

8 7 14

9 7 16

10 8 16

2 - Control Structures

65

Control Structures

▪ Sequence structure: C++ programs executed sequentially by
default.

▪ Selection structures

•if selection structure

– Perform an action if condition is true.

– Skip the action if condition is false.

•if/else selection structure

– Perform an action if condition is true.

– Performs a different action if the condition is false.

•switch selection structure

– Perform one of many different actions depending on the

value of an integer expression.

66

Control structures

▪ Repetition structures

•while repetition structure
– An action to be repeated while some conditions remains true.

•do/while repetition structure
– Similar to while structure.

– Tests the loop continuation after the loop body is performed.

– while tests the loop continuation condition before the loop body is
performed.

•for repetition structure
– used when the number of times to be repeated is fixed/known

– It handles all the details of the counter controlled repetition

– Execution continues as long as the condition is true

67

Condition

▪ Condition is a logical expression that evaluates to true
or false

▪ Specifies the decision you are making

▪ Conditions can be formed by using the equality (==) and

relational operators (< , > , >= , <= , !=)

▪ Equality operators precedence is lower then precedence

of relational operators.

68

▪ Composed of operands and arithmetic operations (+ ,
- , *, /, %)

▪ evaluates to a numeric value
– (e.g. 3 + 4 gives 7)

▪ Operands may be numbers and/or identifiers that
have numeric values

Arithmetic Expressions
69

Relational Expressions

▪ Composed from operands and operators.

▪ Operands may be numbers and/or identifiers that have
numeric values.

▪ Result is a logical value (true or false).

▪ Operators are relational operators: < , > , <= , >= ,= =, !=

▪ Example:
– (a < b) gives true if value of a is less than value of b, or gives
false if value of a is not less than value of b

– (x != y) gives true if x does not equal y or gives
false if x equal y

70

Equality and relational operators

Standard algebraic

equality operator or

relational operator

C++ equality

or relational

operator

Example

of C++

condition

Meaning of

C++ condition

Relational operators

> > x > y x is greater than y

< < x < y x is less than y

 >= x >= y x is greater than or equal to y

 <= x <= y x is less than or equal to y

Equality operators

= == x == y x is equal to y

 != x != y x is not equal to y

71

Boolean variables andrelational operations

int main() {

bool x , y;

x = 5 > 7;

cout << "x = " << x << endl;

y = 5 < 7;

cout << "y = " << y << endl;

x = true;

cout << "x = " << x << endl;

y = false;

cout << "y = " << y << endl;

x = 5;

cout << "x = " << x;

}

72

x = 0

y = 1

x = 1

y = 0

x = 1

Logical Expressions
▪ Also called Boolean expressions

▪ Result is a logical value true or false

▪ Composed from operands and operators.

▪ Operands are identifiers that have logical values

▪ Operators are logical operators:
– &&(AND)

– ||(OR)

– !(NOT)

▪ Example:
– X && Y

– a && b || c

73

&&

True True True

True False False

False True False

False False False

||

True True True

True False True

False True True

False False False

!

True False

False True

Evaluating Logical Expressions

▪ AND truth table

▪ OR truth table

▪ NOT truth table

74

Arithmetic, Relational and Logical

Expressions

▪ Relational expression may contain arithmetic sub

expressions:

− (3 + 7) < (12 * 4)

▪ Logical expression may contain relational and arithmetic

subexpressions:

− x && y && (a > b)

− (2 + t) < (6 * w) && (p == q)

75

Operators Precedence

Operators Associativity Type

() left to right parentheses

++ -- left to right unary (postfix)

++ -- + - right to left unary (prefix)

* / % left to right multiplicative

+ - left to right additive

< <= > >= left to right relational

== != left to right equality

&&

||

= += -= *= /= %= right to left assignment

76

int main()

{

int a = 10, b = 3;

cout<<"a+b="<<a+b <<endl;
cout<<"a+b*2= "<<a+b*2 <<endl;

cout<<"(a+b)*2= "<<(a+b)*2<<endl;

cout<<a<<"<"<<b<<"is “ << (a<b)
<<endl;

cout<<"a+b != a+3 is "
<<(a+b != a+3);

}

Operators Precedence
77

a+b=13

a+b*2= 16

(a+b)*2= 26

10<3 is 0

a+b != a+3 is 0

if selection Structure

if (Condition)

statement;

if (Condition)

{

statement1;

statement1;

statement1;

…

}

78

Read any number from user, then print

positive if it is positive
int main()

{

int Num;

cout<<"Enter an integer Number:";

cin >> Num;

if (Num > 0)

cout<<" Positive\n";

}

79

Another Version

int main(){

int Num;

bool w;

cout<<"Enter an integer number:";

cin >> Num;

w = Num > 0;

if (w)

cout<<" Positive\n";

}

80

if/else selection Structure
if (Condition)

statement;

else

statement;

if (Condition){

statement1;

statement2;

…

}

else{

statement1;

statement2;

…

}

81

Read a mark, then print "PASS" if it is greater than or equal

50, or print "FAIL" otherwise

int main()

{

int mark;

cout<<"Please Enter your mark: ";

cin >> mark;

if (mark >= 50)

cout<<" PASS\n";

else

cout<<"FAIL\n";

}

82

Ternary conditional operator

▪ Ternary conditional operator (?:)

– Three arguments (condition, value if true, value if false)

cout <<(mark >= 50 ? "PASS\n" : "FAIL\n");

Condition Value if true

▪ Equivalent to:

if (mark >= 50)

cout<<" PASS\n";

else

cout<<"FAIL\n";

Value if false

83

More than one statement in if

int main(){

int mark;

cout << "Please Enter your mark: ";

cin >> mark;

if (mark >= 50){

cout<<"PASS\n";

cout<<"You can take the next course\n";

}

else {

cout<<"FAIL\n";

cout<<"You must take this course again\n";

}

}

84

int main(){

int a,b,c,d;

cout<<"To convert from a/b to c d/b, Enter a,b";

cin >> a >> b;

c = a / b;

d = a % b;

cout<< a << "/" << b << "=";

if (c != 0)
cout<<c;

if (d!=0)
cout<<“ “<<d<<"/"<<b;

}

Write a program to print the fraction a/b in the form
c d/b85

Read any number, then print "positive" if it is

positive and "negative" otherwise.

int main()

{

int Num;

cout<<"Please Enter Number:";
cin>>Num;

if (Num < 0)

cout<<"Negative\n";

else

cout<<"Positive\n";

}

86

Equality (==) and Assignment (=) Operators

int main()

{

int x = 0;

if (x = 0)

cout<<"condition is true\n";

else

cout<<"condition is false\n";

}

87

condition is false

Read two numbers and print the largest

int main(){

int x,y;

cout<<"Enter two numbers:";

cin>>x>>y;

cout<<"Max = ";

if (x > y)

cout<<x<<endl;

else

cout<<y<<endl;

}

88

Enter two numbers:15

4

Max = 15

Read three numbers and print the smallest

int main()

{

int a, b, c;

cout<<"Enter three numbers:\n";

cin>>a>>b>>c;

cout<<"Min = ";

if ((a < b) && (a < c))

cout<<a;

if ((b < a) && (b < c))

cout<<b;

if ((c < a) && (c < b))

cout<<c;

}

89

Please Enter three numbers:

8

3

6

Min = 3

Read three numbers and print the smallest

int main(){

int a, b, c;

cout<<"Please Enter three numbers:";

cin>> a >> b >> c;

cout<< "Min = ";

int min = a;

if (b < min)

min = b;

if (c < min)

min = c;

cout<<min;

}

90

Please Enter three numbers:8

3

6

Min = 3

Read three numbers and print the smallest, use
nested if

int main(){

int a, b, c;

cout<<"Please Enter three numbers: ";

cin>>a>>b>>c;

cout<<"Min = ";

if (a < b)

if (a < c)

cout<<a;

else

cout<<c;

else if (b < c)

cout<<b;

else

cout<<c;

}

91

Please Enter three numbers: 5

11

9

Min = 5

Read a number, if it is positive add 10 to it and print

Number "is positive", otherwise, subtract 10 and print
Number "is negative"

int main(){
int Number;
cout<<"Please enter Number:";
cin>>Number;

if (Number>0) {

Number = Number + 10;

cout<<Number<<" is Positive\n";

}

else {

Number = Number - 10;

cout<<Number<<" is Negative\n";

}

}

92

Dangling else

int main()

{

int x = 2 , y = 5 , z = 10;

if (x > y)

if (x < z)

cout <<" Hello";

else

cout <<"Hi";

}

93

Nothing is printed

Multiple Selection Structure (switch)

• Test variable for multiple values

• Series of case labels and optional default case

switch (variable) {
case value1: // taken if variable = value1
statements
break; // necessary to exit switch

case value2:
case value3: //taken if variable = value2 or = value3
statements
break;

default: //taken if variable matches no other case
statements
break;

}

94

Example 1
int main(){

int a;

cout<<" Enter an Integer between 0 and 10: ";

cin>>a;

switch(a){

case 0: case 1: cout<<"hello ";

case 2: cout<<"there ";

case 3: cout<<"Welcome to ";

case 4: cout<<"C++ "<< endl;

break;

case 5: cout<<"How ";

case 6: case 7: case 8: cout<<"are you "<<endl;

break;

case 9:

break;

case 10: cout<<"Have a nice day. "<<endl;

break;

default: cout<<“the number is out of range"<<endl;

}

cout<< "Out of switch structure."<<endl;

}

95

Example 2

int main() {

int score;

char grade;

cin >>score;

switch(score/10)

{

case 0:case 1:case 2:case 3:case 4:case 5: grade='F';

break;

case 6: grade = 'D’; break;

case 7: grade = 'C’; break;

case 8: grade = 'B’; break;

case 9: case 10: grade = 'A’; break;

default: cout<<"Invalid test score."<<endl;

}

cout<<"Grade is"<<grade<<endl;

}

96

Example 3

int main() {

char grade;

cout <<" Enter grade as a letter : " ;

cin>>grade;

switch(grade){

case 'A': cout<<"The Grade is A"; break;

case 'B': cout<<"The Grade is B"; break;

case 'C': cout<<"The Grade is C"; break;

case 'D': cout<<"The Grade is D"; break;

case 'F': cout<<"The Grade is F"; break;

default: cout<< "The Grade is invalid";

}

}

97

Example 4
int main()

{

int age;

cout<<"Enter your age: ";

cin>>age;

switch (age >= 18){

case 1:

cout<<"old enough to drive"<<endl;

cout<<"old enough to vote."<<endl;

break;

case 0:

cout<<"Not old enough to drive"<<endl;

cout<<"Not old enough to vote."<<endl;

}

}

98

Quiz

▪ Write a program to read two numbers (a and b) and one character (op).
The program then uses switch statement to print the output according
to the table below:

op output

+ a+b

- a-b

* a*b

/ a/b

otherwise "Invalid Operation"

99

for Repetition Structure

▪ General format:
for (initialization; condition; increment)

statement;

▪ Statements will be executed repeatedly while condition is true.

▪ When the condition become false, the loop will be terminated

and the execution sequence will go the first statement after for

loop.

▪ If the loop body contains only one statement, there is no need

to begin { and end } the loop body.

100

for(int c = 1; c <= 5; c++)

cout << c << endl;

for (int i = 1; i <= 5; i++)

cout<<"Amman\n";

for (int i = 5; i >=1 ; i--)

cout<<"Amman\n";

Examples
101

1

2

3

4

5

Amman

Amman

Amman

Amman

Amman

Amman

Amman

Amman

Amman

Amman

Print the following numbers:

1 3 5 7 9 11

for (int k=1; k<=11; k+=2)

cout<<k<<"\t";

Print the following numbers

20 17 14 11 8 5 2

for (int m=20; m>=2; m-=3)

cout<<m<<"\t";

102

Print the following numbers
1 2 3 4 … 𝑛 (entered by user)

int main()

{
int n;

cout<<“Enter the upper limit:";
cin >> n;

for (int i=1; i<=n; i++)

cout<<i<<"\t";

cout<<endl;

}

103

Print the following numbers

a (a+1) (a + 2) … b (a and b are entered by user)

int main()

{

int a,b;

cout<<"Enter the start value:";

cin>>a;

cout<<"Enter the end value:";

cin>>b;

for (int i=a; i<=b; i++)

cout<<i<<"\t";

}

104

Read five numbers from user and print the positive

numbers only

int main()
{

int num;

for (int i=1; i<=5; i++){

cout<<"Please Enter No "<<i<<':';

cin>>num;

if (num > 0)

cout<<num<<" is positive\n";

}

}

105

Compute and print 𝑆 , Where S = 1 + 2 + 3 + 4 +5

int S=0;

for (int i=1; i<=5; i++)

S += i;

cout<<"Sum is "<<S<<endl;

Compute and print 𝑆, Where S = 1 + 3 + 5 + 7 + ⋯+n

int Sum=0, n; cout<<"Please

Enter n"; cin>>n;

for (int i=1; i<=n; i += 2)

Sum += i;

cout<<"Sum="<<Sum<<endl;

106

Compute and print the summation of any 10

numbers entered by the user

int main()

{

int S=0, N;

for (int i = 10; i >= 1 ; i--)

{

cout<<"Enter the next number:";

cin>>N; S += N;

}

cout<<"Sum = "<< S <<endl;

}

107

Compute and Print the factorial of 5, where:
𝑓𝑎𝑐𝑡 (5)= 5 × 4 × 3 × 2 × 1

int main()

{

int Fact=1;

for (int j = 5; j >= 1; j--)

Fact *= j;

cout<<"5! = "<<Fact<<endl;

}

108

int main()

{
int Fact = 1, n;

cout<<"Enter an integer: ";

cin>>n;

for (int j=n; j>=1; j--)
Fact *= j;

cout<< n <<"! = "<<Fact<<endl;

}

Compute and Print the factorial of n, where
𝑓𝑎𝑐𝑡 (𝑛)= 𝑛 × 𝑛 − 1 × 𝑛 − 2 ×⋯× 1109

Compute and Print the value of M where:
𝑀 = 2×4×6×⋯× 𝑛

int main()

{

long M = 1;

int n;

cout<<"please enter the upper Limit:";

cin>>n;

for (int i=2; i<=n; i += 2)

M *= i;

cout<<"M = "<< M <<endl;

}

110

Quiz

▪ Write a program that prints the numbers from X to Y, with
step Z , using for statement. The program should read

X, Y, Z then start the loop

111

Compute and Print 𝑀 𝑛

int main()

{

long Result = 1;

int M, n;

cout<<“Enter the Base number:”;

cin>> M;

cout<<“Enter the exponent:”;

cin>> n;

for (int i=1; i<=n; i++)

Result *= M;

cout<<"Result= "<<Result<<endl;

}

112

Quiz

▪ Write a program that finds 𝑀 𝑛 for positive and negative 𝑛

113

While Repetition Structure

initialization;

while (Condition)

{

statements;

increment;

}

▪ Statements will be executed repeatedly while condition is true

▪ When the condition become false, the loop will be terminated and the

execution sequence will go to the first statement after While loop

▪ If the loop body contains only one statement, there is no need to begin

{ and end } the loop body.

114

Print the word "Amman" five times

int main()

{

int i=1;

while (i<=5){

cout<<"Amman\n";

i++;

}

}

115

Amman

Amman

Amman

Amman

Amman

Print the word "Amman" five times

int main()

{

int i=1;

while(i++ <= 5)

cout<<"Amman\n";

cout<<i<<endl;

}

116

Amman

Amman

Amman

Amman

Amman

7

Print the following numbers

1 3 5 7 9 11

int main()

{

int i=1;

while (i <= 11)

{

cout<<i<<'\t';

i+=2;

}

}

117

Print the following numbers

20 17 14 … 𝑛

int main()

{

int n, k=20;

cout<<"Enter the lower limit:";

cin>>n;

while (k >= n)

{

cout<<k<<'\t';

k -= 3;

}

cout<<endl;

}

118

Read five numbers from the user and print

the positive numbers only

int main()

{

int num, j=0;

while (j++ < 5)

{

cout<<"Enter a number:";

cin>>num;

if (num > 0)

cout<<num<<endl;

}

}

119

Sum of numbers from x to y

int main()

{

int sum = 0, i, x, y;

cout<<"Enter First Number: ";

cin >> x;

cout<<"Enter Second Number: ";

cin >> y;

i = x;

while (i <= y)

{

sum = sum + i;

i = i+1;

}

cout<<"Sum from "<<x<<" to "<<y<<" = "<<sum;

}

120

Enter First Number: 5

Enter Second Number: 8

Sum from 5 to 8 = 26

Compute and print 𝑠𝑢𝑚, Where

𝑠𝑢𝑚 = 1 + 3 + 5 + 7 + ⋯+𝑛

int main()

{

int n, Sum=0, i=1;

cout<<"Enter the upper limit:";

cin>>n;

while (i <= n)

{

Sum += i;

i += 2;

}

cout<<"Sum="<<Sum<<endl;

}

121

Read 10 numbers and compute the sum of

numbers divisible by 3

int main() {

int Num, Sum=0, i=1;

while (i <= 10) {

cout<<"Enter a number:";

cin>>Num;

if (Num % 3 == 0)

Sum += Num;

i++;

}

cout<<"\nSum="<<Sum;

}

122

Compute and Print the value of M where:
𝑀 = 2×4×6×⋯× 𝑛

int main()

{

int N, M=1, i=2;

cout<<"Enter the upper limit:";

cin>>N;

while (i <= N) {

M *= i;

i += 2;

}

cout<<"\nM="<<M;

}

123

Do While Repetition Structure

initialization

do {

Statement(s);

} while (Condition) ;

▪ Statements will be executed repeatedly while condition is true

▪ When condition become false, the loop will be terminated and

the execution sequence will go to the first statement after the

loop

▪ The loop body will be executed at least once.

124

Print the word "Amman" five times

int main() {

int i = 1;

do {

cout<<"Amman\n";

i++;

} while (i <= 5);

}

125

Program to read an integer then prints if it is Even or Odd.

The program keeps running until number 1 is entered

int main() {

int Choice, Num;

do {

cout <<"\nEnter a Number: ";

cin >> Num;

if (Num%2 == 0)

cout<<Num<<" is Even\n";

else

cout<<Num<<" is Odd\n";

cout<<"Enter 1 to Exit program\n";

cout<<"Enter any other number to repeat\n";

cin>>Choice;

} while (Choice != 1); }

126

Modifying previous program such that 'Y' is entered to

continue program and any other character to end

int main()

{

int Num;

char Choice;

do {

cout<<"\nEnter a Number: ";

cin >> Num;

if (Num%2 == 0)

cout<<Num<<" is Even\n";

else

cout<<Num<<" is Odd\n";

cout<<"Enter Y to continue\n";

cout<<“Enter any other character to end program\n";

cin>>Choice;

} while (Choice == 'Y');

}

127

Modify previous program such that 'Y' or 'y' is entered to

continue
int main() {

int Num;

char Choice;

do {

cout<<"\nEnter a Number";

cin >> Num;

if (Num%2 == 0)

cout<<Num<<" is Even\n";

else

cout<<Num<<" is Odd\n";

cout<<"Enter Y to continue\n";

cout<<“Enter any other character to end
program\n";

cin>>Choice;

} while ((Choice == 'Y') || (Choice =='y'));

}

128

break Statement

▪ Immediate exit from while, for, do/while, switch

▪ Program continues with first statement after structure

▪ Used to escape early from a loop

▪ Skip the remainder of switch

129

Example
130

1 2 3 4

Broke out of loop when x became 5

int main ()

{

int x;

for (int i = 1; i <= 10; i++)

{

if (i == 5)

break;

cout<< x<< “ ”;

}

cout<<endl;

cout<<“Broke out of loop when x became”<<x<<endl;

}

Read a number and print "Prime" if it is a prime

number, or "Not prime" otherwise
int main() {

bool Prime = true;

int i, num;

cout<<"Please enter the number:";

cin>>num;

for (i=2; i<num; i++)

if (num%i==0) {

Prime = false;

break;

}

if (Prime)

cout<<num<<" is a Prime number\n";

else

cout<<num<<" is not a Prime number\n";

}

131

continue Statements

▪ Used in while, for, do/while

▪ Skips remainder of loop body

▪ Proceeds with next iteration of loop

132

Example

int main(){

for (int x = 1; x <= 10; x++)

{

if(x == 5)

continue;

cout << x << " ";

}

cout<<endl;

cout<<"skipped printing the value 5";

}

133

1 2 3 4 6 7 8 9 10

skipped printing the value 5

Read five numbers from user then print the positive
numbers only (use continue)

int main()
{

int num;

for (int i=1; i<=5; i++){

cout<<"Please Enter No "<<i<<':';

cin>>num;

if (num < 0)

continue;

cout<<num<<" is positive\n";

}

}

134

Nested for

▪ for repetition structure that rests entirely within another for

repetition structure

for(initialization; condition; increment)

for(initialization; condition; increment)

statement

▪ If the outer loop will repeat m times and the inner loop will

repeat n times, then each statement in the inner loop will be

executed m n times

Outer loop

Inner loop

135

Nested for Example 1

for (int i = 1; i <= 5 ; i++)

{

for (int j = 1 ; j <= 5 ; j++)
cout << "*" ;

cout << endl;

}

136

* * * * *

* * * * *

* * * * *

* * * * *

* * * * *

Nested for Example 2

int main()

{

for(int i=1;i<=5;i++)

{

for (int j=1;j<=5;j++)

cout<<i<<","<<j<<" ";

cout<<endl;

}

}

1,1 1,2 1,3 1,4 1,5

2,1 2,2 2,3 2,4 2,5

3,1 3,2 3,3 3,4 3,5

4,1 4,2 4,3 4,4 4,5

5,1 5,2 5,3 5,4 5,5

137

Draw the following shape:

for (int r = 1 ; r <= 5; r++)

{

for (int C = 1; C <= r; C++)

cout<<'*';

cout<<endl;

}

138

*

* *

* * *

* * * *

* * * * *

Draw the following shape:

for (int r = 1; r <= 5; r++)

{

for (int c = r; c <= 5; c++)

cout<<'*';

cout<<endl;

}

139 * * * * *

* * * *

* * *

* *

*

for (int i = 1 ; i <= 5; i++)

{

for(int k = i ; k < 5 ; k++)

cout<<" ";

for (int j = 1; j <= i; j++)

cout<<'*';

cout<<endl;

}

Draw the following shape:
140

*

* *

* * *

* * * *

* * * * *

What is the output for the following program

for (int i = 1 ; i <= 5 ; i++)

{

for (int j = 1; j <= 5; j++)

if (i == j)

cout<<"*";

else if (i+j == 6)

cout<<"*";

else

cout<<" ";

cout<<endl;

}

141

* *

* *

*

* *

* *

Using nested for, display the multiplication

table for the number 3

for (int i=1; i<=10; i++)

cout<<"3 x "<<i<<" = "<<3*i<<endl;

142

calculate 𝑆, where 𝑆 =𝑚0 + 𝑚1 + ⋯+ 𝑚 𝑛

int main ()

{

int s=0, n, m, t;

cout<< “Enter m please :”;

cin>> m;

cout<<“Enter n please :”;

for (int i = 0 ; i <= n ; i++){

t = 1;

for (int j = 1 ; j <= i ; j++)

t = t * m;

s = s + t;

}

cout<<s<<endl;

}

143

Nested while

int main()

{

int j = 1;

while (j <= 4)

{

int i = 1;

while(i <= 4){

cout<<'*'<<"\t";
i++;

}
j++;
cout<<endl;

}

}

144

* * * *

* * * *

* * * *

* * * *

Draw the following shape using nested while

int main()

{

int i=1;

while (i<=5)

{

int j=1;

while (j<=i)

{

cout<<'*';

j++;

}

cout<<endl;

i++;

}

}

145

*

* *

* * *

* * * *

* * * * *

